Clean room analysis of the PMS150C/PFS154
programming sequence v0.4

Thanks to everyone involved in investigating the Padauk microcontrollers on the EEV and uC.net
forums. Please see here for further background and work leading to this analysis:

http://www.eevblog.com/forum/blog/eevblog-1144-padauk-programmer-reverse-
engineering/350/

https://www.mikrocontroller.net/topic/461002




Clean Room Analysis Disclaimer

= This report is solely based on analyzing datalogs of the programming sequence as provided here:

PMC150C: http://www.eevblog.com/forum/blog/eevblog-1144-padauk-programmer-reverse-
engineering/msg2096917/#msg2096917

PFS154C: http://www.eevblog.com/forum/blog/eevblog-1144-padauk-programmer-reverse-
engineering/msg2113471/#msg2113471

= No attempts have been made by me to reverse engineer any of the software provided by Padauk.

»= The information in this document is provided “as is”, without warranty of any kind.



Pinouts

MOSI pasicin«cing mmzpwm E PASCING.TMZPWM SCK
GND oo [2] voo VDD
MISO PABICIN2- E E PAS/PRSTS VPP

PMS150C-U06 (SO T23-6 60mil)

voo [T 1@ \_/ GND
paTix1 [2] [7] PAOINTOIPGOPWNICOICOM2
ICPDA PAGIX2 3] ] PA4/COMICIN4ICINAIPG1PWM
ICVPP easierstspczrwM [ [5] PAS/TMZPWINCOMAICINT/PG2PWM ICPCK

PF5154-508:S0P8 (150mil)

PBO

PB1
OCOA/D6

VvDD

MISO

VPP

vDD

PATICIN3-

PAGICINZ-

PASPRST#

I E

7

6

5

L LN E

PADANTOICO

PALTCIN+HCING-TMZPWM

PAXCINA-TM2PWM

PM5150C-S08 (SOP8-150mil)
PMS150C-D08 (DIP8-300mil)

GND

MOSI

SCK

GND

PB2
PB3



PMS150C protocol



Initial analysis of data logs.

From a first glance, the programming interface of the PMS150C seems to be a straight forward SPI interface.
MSB first, data is valid on rising edge of clk.

' ' MOSI rasicin-icinaTmzPwm E PA3ICINI-TMZPWM SCK
The pinout is as follows: (5] o
MISO rasicinz Z pasersT: /PP
= PA3: SCK/Clock (driven by writer/master) i R s

= PA4: MOSI/Data in (driven by writer/master, data is valid on rising edge of clk. Data is set at arbitrary times
due to random timing of writer software)

= PA5: VPP

= PA6: MISO/Data out (driven by MCU, data is valid on rising edge of clk. Data is set on falling edge since the
MCU does not have an internal clk)

= Furthermore, the programmer needs to control VDD to reset the MCU.

VPP is 7.5V during read and 10.8 V during writing.

VDD is 6.0 V during programming, 4 V during entry and 6.5 V/2 V for verification. | may be sufficient to keep
VDD at 5V if you don't want to verify all corner cases.

Note: The PMS105C is a device with 13x1kbit memory and 13 bit instruction encoding.



Overview of dump2 — writing to previously programmed device

+100 ms +150 ms +200 ms +250 ms +300 ms +350 ms +400 ms +450 ms +500 ms +550 ms +600 ms +650 ms +700 ms +750 ms +800
| | | |

‘3
S
&
= )

2 vidiv

1 = I—“\
VPP =75 7.5 7.5
VDD=4.0 2.0 5.0

10.8 7.5 7.5
6.0, 654 2.0

2 \div

E— =

10 Vi diy

[EZ® - SPL-MISO-data
» SPL: MISO bits
» SPT: MOSI data
» SPT: MOSI bits

R T
I I @I I
T T D T
D D D

Command A7 A6 A6
Phase 0 1 2

= >
Ny ————



Summary of all phases of the programming sequence (Dump 2)

Phase Command VDD VPP Description

0 A7 (Write) 40V 7.5V Read device ID. This is achieved by initiating a dummy write that is aborted before starting the actualy OTP programming

1 A6 (Read) 20V 7.5V Read instruction memory words 0x03F0-0x3FF at low VDD voltage corner. This region contains calibration data.

2 A6 (Read) 50V 7.5V Read instruction memory words 0x03F0-0x3FF at standard voltage corner. This region contains calibration data. (Should this be VDD=6.5V? May be a bug)
3 A6 (Read) 20V 75V Read instruction memory words 0x000-0x3EF at low VDD voltage corner. Dump of full memory.

4 A7 (Write) 6.0V 108V Write main memory region between 0x000-0x3EF. Only memory cells used by the program are written to.

5 A7 (Write) 6.0V 108V Write to 0x3F6/0x3F8/0x3FC/0x3FE. Housekeeping?

6 A6 (Read) 6.5V 75V Read instruction memory words 0x03F0-0x3FF at high voltage corner for verification.

7 A6 (Read) 6.5V 7.5V Read main memory region between 0x000-Ox3EF at high voltage corner for verification. Only previously written memory is read.
8 A6 (Read) 20V 75V Read instruction memory words 0x03F0-Ox3FF at low voltage corner for verification.

9 A6 (Read) 20V 7.5V Read main memory region between 0x000-0x3EF at low voltage corner for verification. Only previously written memory is read.
10 A7 (Write) 6.0V 10.8V Write to Ox3F6/0x3F8/0x3FC/0x3FE to store clock calibration data and code checksum.

11 A6 (Read) 6.5V 7.5V Read instruction memory words 0x03F0-0x3FF at high voltage corner for verification.

12 A6 (Read) 20V 75V Read instruction memory words 0x03F0-0x3FF at low voltage corner for verification.

= Note: For a fresh device, clock calibration takes place between steps 9 and 10.
Two additional phases are inserted (see dump 4).




Enter programming mode

+127000 ps +127200 ps +127400 s +127600 s +127800 s
I I I | I I I | I I | 1wl I | I I I | I I

__Send command/entrykey

PAG

VDD

- = — = — - .-k S

MCU resets here. Reset voltage is 2V [640 mV] 5 V/div

[4 V] 2 V/div

Each phase of the programming sequence is as follows:

Set all pins to GND

Drive VPP to 7.5V (possibly >6V is threshold?)

wait 100ps

Drive VDD to ~4V

wait 500ps

Send key/command OxA5A5A5AX (X=6 for read, X=7 for write)
Ramp to target VPP (7.5 V for reading, 10.8V for writing)
Wait for 5 ms

Ramp to target VDD

10. Wait for 10 ms

11. Perform read or write operation (see later slides)

12. Pull VDD and VPP to GND

WO NN RAWNR

Programming mode is always entered with
Vpp=7.5V
Vdd=4V

Voltages are only adjusted to final target after sending command (step 6).
Steps 7-10 can be skipped if initial voltages are kept.

Note: Logic levels scale with Vdd. If varying Vdd is implemented, this
needs to be considered in the SPI interface hardware (buffer).



Enter programming mode with voltage adjustment and read/write phase

+346 ms +348 ms
+ | | | | |

+350 ms +352 ms

+354 ms +356 ms +358 ms

PAG L

5 Vfdiv

e

Entry sequence

Y

Adjust VPP
(Wait time for VPP is 5 ms)

v
Adjust VDD

(Wait time for VDD is 10 ms)

TV

Y
Read / Write sequence



OxA5A5A5A7 key/command — write

+356120 s +356130 ps +356140 ps +356150 ps +356160 ps +356170 ps +356180 ps
b A} | | I | ‘ I I I I ‘ I I | I | |

| L) e e e e e
1L [ 1 [ R eInEN
1 Il NN N

+356190 ps +356200 ps +356210 ps +356220 ps +356230 s
I | | I | I I | I

MISO pulled low by MCU after cycle 31
MISO floats

MISO \

[640 mV] 2 Vidiv

[4 V] 2 V/div

-l A A A A A AAA AHAAAARAARAAAAAA AAARAHAS |
B | i

B8 B, 0 B

Not on PulseView: SPI decoder uses VDD as CS (Active high). This will reset the bitcount when the MCU is reset and ensures proper decoding for magic word
Analog signal were converted to logic by using a threshold of 1.8V (3.3V logic) to also capture the regions with Vdd=2V



OxA5A5A5A6 key/command - read

+140680 ps +140690 ps +140700 ps +140710 ps +140720 ps +140730 ps +140740 ps  +140750 ps +140760 ps +140770 ps +140780 s +140790 ps

MISO pulled low by MCU after cycle 31

'

1

w
(@)
=

2 Vifdiv

AAANHAAA A A AR AR AARHARAA AHARHHH {seuencesszodesinoa
uuuuuuuuuuuuuuuuuuuuuuu uuuuuuu -




Command / Entry key encoding

= The entry key is 32 bit and is sent by the master directly after entering programming mode.

A6 key: OXA5A5A5A6 -> |nitiate reading
A7 key: OXA5A5A5A7 -> |nitiate writing

No other codes were found.

The slave (MCU) pulls MISO down after clock 31. The pin floats before, which could suggest that the
programming logic is activated after 31 clocks. This may also suggest that only the LSB is actually used
for commands.



Phase 0 — Check device ID - Key-A7, Vdd=4 V, Vpp=7.5V

+327840 ps +327860 ps +327880 ps +327900 ps +327920 ps +327940 ps +327960 ps +327980 ps +328000 ps +328020 ps
| I I | I I I | I I I | I I I | I I I 4 I I I | I I I | I I I | I I |

+328040 pe
|

s HH H H HEAH HHH A
_ 1] L L L L L L
— —
HAAAHARA HHHHFHH HAdAHARA ARARARAN HHHHHHH?HHHHH‘HHHEHPHHWTFHEEHEEmrMP
L ILUJ ILLUJ LULLIDUDL \UU um LUJJL UL U UU NN OO0ORRuton m e 0 e i i IRRIN
:EEE%EEZ 4 _u H { - {.‘ . W W wm 28 i
vecvosin: (@EHNDEEE@EEE @@E@EEREE® @@EEEOEE @@@DEDEE@ @
32 bi:;magic key ﬂa;tel;ssqus 26tBi;s{'O” ; iaz'c(jerr::réizéé bit ,,0“
o - emply data wor Slave sends 12 bit response
= Phase 0 is basically an incomplete write of 0x0000/0x0000 to 0x000. The write exection cycle is 0b101000010110
omitted to prevent the dummy data from actually being written. = OxA16 device ID

The device ID is clocked out of MISO during the adress phase of the write.

= |n principle, the device ID could also be read during a read phase.

Not that the write execution
sequence is omitted so the actual
memory write is not started.

= Sequence is identical for both previously programmed and clean device (logs 2 and 4)

= |dcode is updated on falling edge! Delay 240-320ns.



Read sequence

+173950 ps +173960 ps +173970 ps +173980 ps +173990 ps +174000 s +174010 ps +174020 ps +174030 ps +174040 ps +174050 ps +174060 ps +174070 ps, +174080 ps +174090 ps +174100 ps
I | I | | | I I | | | 1 I I I | 1 I I | ‘ I I I | ‘ I I I I ‘ | I I I | | I I I | I I I I | | | I I | | | | I | I | | I | [ I | I | I I I I | I I I | | I
1 1
! MISO updated on falling edge for all other cycles
| Att:MISO updated on rising edge for first clk! \ '
1
1
1
1

¢ Important !

10 Wdiv

Note extended clk

/ This bit was incorrectly decoded, should be 1 S8

T A A/ A AARM] 'i - | AAAHAHA
IR NN NI NI I IRy

: W S % A : 3 e

R I 1 [Py [yt

[EE® - sPr: MISo-data——{_
» SPT: MISO bits

} SPI: MOSI data
¥ SPL: MOSI bits

I\ J \ J N
. Y Y Y
12 bits adress 13 bits data Start of next address
Sent by master on MOSI Sent by MCU

Read sequence is straight forward:
= Master sends 12 bit adress, slave sends 13 bits of data in subsequent cycles.

= There is one apparent oddity:
Usually the data on MISO is always updated on the falling clk cycle. However, the MSB of the data is updated with a delay of
half a clock cycle, on the rising edge of the clock.

= => For the MSB, it is therefore necessary to set clk high and read MISO after ~2us before setting clk low again.
= What is the reason for this behavior? No idea, it could be remnant of a direction switching sequence for a bidirectional port.



Another example of MISO MSB exception during the read sequence.

e SB-is changed on-rising-and-falling-————
| clock edge due to previously
mentioned exception.




Phase 1 — overview — Read Ox3F0-Ox3FF (system area)

| ‘?3}9'00 Ius - +1I74Cilm :IS o +?741‘00 515 _ +T74200 Ejs . +1‘743‘ﬂﬂ pljs - +]‘.74400 515 - +T745‘00 }‘JS o +1‘746‘00 ;IJS o +T747|00 }IJS e +T7’4S‘GO|‘E i +1‘749‘00|Iis . +T750‘DD Ips - ?751'00 t!s o +1I752|OD }‘!S < +?753‘00 :JS - +T754|ﬂﬂ Ejs - +1I755|ﬂﬂ g‘Js - +?75-6‘00 515 - ‘?75'00 :IS - +1I759|ﬂﬂ p‘ls - +T759‘GD tjs ‘
777777 i...__ ‘4.‘ = [_.-._.. 2 RS A .| i ._-.!,4. e ,_.4_.!. it — p_;-._l‘. R o
""" | ‘ | | \ |
___f_l__'_FTHF_ I S S ) I
N [ ' I ] =
. m I {7 [ [ [ I
______ L _.H | Lt ‘_ L L H | Lt [0W] 2 vydiv
ffffff \
""" The device ID is cIocked out on MISO durmg the second adress phase of each read cycle.
Bug or feature?
,,,,,, [5V] 2 v/div
e
______ HHW AL IIH\IMIHIHJ\I I II|I1I|W|I| JTFR |J\ NI Il||I|\||J| MMM ||!W| U IW\IMIHNH AT I!|N|!HW|H|| I R H|H I T STV Y VN G
¥ SPI; MISO bits mmmmmmmmmmmm
SPT MasTdeta {3F ) 00X 00 { 1F 1 88 ) 00 )C0F 1 c8 X 60 07 (B (00 { 83 /P4 00 )X 01 )(FAX 80 A 00 (F,( 80 ) 00 J7E N B {00 (3F ¥ @0 X 00 y 1F {08 ) 00 W OF ) E8 ) 00 i 67 KF6 ){ 00 ) 3 XFC ¥ 00 X 01 (FEX B0 X 00 KFE) 80 X 00 J7F ) E0 K 00 )

= The MCU seems to send out information during adress cycles as well:
= During the second adress cycle the device ID is sent.

= Qccasionally the MSB is set on MISO in subsequent adress cycles. Glitch? Parity information?



Write Sequence Part |

+371370 ps +371380 ps +371390 ps +371400 ps +371410 ps +371420 ps +371430 ps +371440 ps +371450 ps +371460 ps +371470 ps +371480 ps +371490 ps +371500 ps +371510 ps +371520
[ R e T A T T e T T e T T T O T S S A A T T SO S A AU SN S U AT B TR T e T A
J l , |
| | | |
J l_ ‘_. 10 V/div
Pevice 1D {on-first adress cvele-onh)
woeviceo L= ‘\Jll rovtaurcoo Uy\al\.— VIIIY’
10 V/div
A dApAARAAARd AROAROARAAAARN AAAAARAA[ARS ﬁf(
L LuLuLuuuuu UJJJJU JLILILILT

SPIMJSBdt { 00

___uuuuumuuuﬂ(

[0 (] &
* SPL: MISO bits

10 V/div

v\\-
/
1

¥ SPI: MOSI data
* SPL: MOST bits

\

-
13 bits instruction word 0

Y Y ’
13 bits instruction word 1 12 bits adress (even!) 1X0° -> fiirst part of Write execution
Sent by master on MOSI Sent by master on MOSI Sent by master on MOSI
. . Stretched clock cycle
= The PMS150C seems to write two words of memory per write cycle.

= Each write cycle consists of the the following initiation sequence:

= Send 2x 13 bit instruction words
= Send 12 bit adress word. (Needs to be dividable by two ?).

-> write takes place here

= Send a single ,,0“ bit. The write cycle seems to be aborted if the device is powered down before sending this bit.
= The next low-> high transition of the clk seems to initiate the write.



Write Sequence Part Il

+371350 ps +371400 ps +371450 ps +371500 ps +371550 ps +371600 ps +371650 ps +371700 ps +371750 ps +371800 ps +371850 ps +371900 ps +371950 ps +372000 ps +372050 ps +372100 ps +37215
topcsoonb S oo o e By sap o leg B il s e greeae e d g el dboaeca s BN E cus s e me B Pi s e Sneayesnsanea il e e spadladis e el fos s alliea e mes el it e ool S et e el

- 0l I — 1
|| L I

| |
i imes il
LT o (|

10 V/div

i | | H__ —
\1 | H| | 10 Vdiv

| i . _— ———— A ROA

L i L ;‘-A-..eteh_e_d_d_o_ckcyd_e N0 711c ‘
| . | I . | ILI SIS | |

& sru Miso data e e e {8 X4 ¥ 87 ¥ 80 ¥ oo {08

¥ SPE: MISD bits - S0000000000008 0000000008 NN
» SPL data @ X A0 L W o0 _' 0 } ; e
' ::i :gzib‘; J_\

\ Y /\\ Y J\ e J

Write initiation Write execution L i Write initiation
words 0/1 Leading zero bit [T { ST words 2/3
. . . - X
= The write execution cycles takes approximately 500us. Trailing zero bit

= The sequence consists of three steps:
= 1) Send 1x‘0‘ at normal clk — ,Leading zero bit“
= 2) Stretched clock cycle (497us) while MOSlI is clocked at 16 kHz
= 3)Send 1x‘0‘ at normal clk — ,Trailing zero bit“
= |t appears a secondary clock signal of 16kHz is provided on MOSI. Very odd.



Write Sequence Part Il — full sequence overview of phase 5

+455200 us +465400 ps +465800 ps +455000 ps 00 ps +466400 ps msssoo ps

'fﬂﬁﬁ'lrvw T astabulaBladalas aslalakatehalis s Nadenuadulat
N 1] /7AS NNy NRNANNNAN )7 =SS uAn g NN NA NN )45 A O o T
e e —— -

* SPI: MISO bits

»spr Most data (HEHHNDD
»spr: mostbits [N

B s msoe QOOOO 000K %
AR

= The last write execution cycle simply ends with the H->L transition of SCLK.

= The MCU will also output data on MISO during the write initiation cycle.
= First adress cycle: The device ID is clocked out.

. Sul_osequent cycles: The data and adress words of the previous cycle are repeated.

This may be a feature to verify the correctness of the written data without a separate read phase. However, it seems
that the current software is not making use of it since the information of the last write cycle is discarded.

= Edit: As noted in the EEV forum, this is most likely just information that was clocked out from the SPI register
in the the previous cycle.




PFS154 protocol



Overview

PFS154
wo o Tt oo PA3 = ICPCK
paTiXt [T] [7] PAOINTOPGOPWMICOICTH2 PAS = | CV P P
ICPDA Paeix2 3] [[5 ] PA4/COM3ICIN+ICINA-PG1PWM _
ICVPP easirst#Pe2PwM [7] [T] PAITM2PWMICOMACINT/PG2PWM ICPCK PA6 = C PDA
PFS154.S08:50P8 (150mil) VDD

The programming interface of the PFS154C as based on a serial interface with bidirectial data line. MSB first, data is valid on
rising edge.

The pinout is as follows:

PA3: ICPCK/Clock (driven by writer/master)

PA5: VPP

PA6: ICPDA/Data InOut (driven by slave/MCU or master, depending on bus direction)
= Furthermore, the programmer needs to control VDD to reset the MCU.

ay be sufficient to keep VDD at 5V if you don't want to verify all corner cases.

The PFS154C is a device with 14x2kbit memory and 14 bit instruction encoding.



PFS154 full programming sequence overview

1 1 | 1 1 | | | 1 1 | | | I 1 1 | 1 1 [ | 1 1 1 | | 1 1 | 1 1 [ | 1 1
(S —— Vo B T
1CPCK 1||r\|||f;—'—|‘—'l—"q — ”L"
e I LI
ICPDA T

:--MISB-data-—!—@—'—

: MISO bits |

Phase 4 5 6 7 8

0 1 2 3

Command A7 A6 A7 A6 A6
A6 A6 A3 A6

5.5 2.0 5.82.0 5.0

vdd
3.0 5.0 2.0 2.0
Vpp 55 5 80 55 7.5 55 7.555 55



PFS154 entry sequence

+988000 ps +388200 s +988400 s +988600 ps +988800 s +98900
| | | |

! ! ‘ ' ' ! ! ‘ ! ‘ ' ! Each phase of the programming sequence is as follows:

1. Set all pins to GND
""""""""""""""""""""""""""" i —, 2. Drive VPP to 5.5V (threshold is relative to VDD)
AR w0
5. wait 500ps
6. Send key/command OxA5A5A5AX (X=6 read, X=7 write, X=3 erase)
7. Receive response (see later slides)
8. Ramp to target VPP (5.5 V for reading, 7.5V for writing, 8V for

erasing)
9. Wait for 5 ms
10. Ramp to target VDD
11. Wait for 10 ms
12. Perform read or write operation (see later slides)
13. Pull VDD and VPP to GND

-------------------------------------------- Programming mode is always entered with

T -| e ST AR R R R L e Vpp=55 v
SRS e e Vdd=3V
= 2 Vidiv
"SF',L_ BsisssitisislistiotsEsistSISISISISIRINS (EYF ?;@z@@* Voltages are only adjusted to final target after sending command (step 6).
} SPL: MISO bits SO (ol EEE  Steps 8-11 can be skipped if initial voltages are kept.

Note: Logic levels scale with Vdd. If varying Vdd is implemented, this

. .. . ) ) needs to be considered in the SPI interface hardware (buffer).
Entry mode is very similar to PMS150C. Main differences are marked in red.

Note: The most important factor to activate the programming mode is the difference between VPP and VDD during MCU reset.
->VPP-VDD>=2V! If a higher VDD is used, also VPP needs to be increased accordingly.
E.g. VDD=5V and VPP=6V will fail to enter programming mode. The difference between VPP and VDD can be reduced after entry.



Full sequence

+988 ms +990 ms +992 ms
1 | 1 I | I 1

Command

=% I

wul
3
n
G
[HEN
o
3
w

\
Licve S
[EZ® - spr:-mise-data—|[[I
¥ SPL; MISO bits

= Same as for PMS150C



Command sequence (Phase 3)

M->S S->M
Bus reversal Bus reversal
+701580 ps +701600 ps +701620 ps +7015|40 us +701660 ps +701680 pis +7017|'00 us 4701720 ps 701740 +701760 ps +701780 s A
] ] | | ] ] | ] ] | | ] ] ] ] ] | | ] ] | | ] ] | ] ] | | ] ] | | ] ] | | ] ] | | ] 1 |

— M= = ey P |'¢_ o

B S ESINEESINIEESNNE I EmEEEEEED SEE

: t i 1 _"““'_1 ]_1 T I_'
i (70 W W W W W W W OWCW N W W WCN W W W W W W) | | A R O N Al

—

Note show slope of data
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Changes when slave takes over bus

[EZ® sPr-MISO datal_ A5 b R - = D & A G AL
v ser: miso bits (T HT0 IR @ W )T 0 K @ O @mcHd a))@o@@daEaa o) )eae@® @EEEEeE @
N J
N J v
32 bits command 3 bits command 1 bit 12 Bit response 1 bit
Master owns ICPDA Master owns ICPDA BR Slave owns ICPDA BR




Command / Entry key encoding

Full command sequence:
= 32x1 bit command (Master drives data line)
= 3x1 bit dummy* (Master drives data line )
= 1x1 bit bus reversal (Master releases data line)
= 12x1 bit DevicelD (Slave drives data line)
= 1x1 bit bus reversal (Slave release data line)
= 48 clock cycles in total.

= The entry key is 32 bit and is sent by the master directly after entering programming mode.

= A6 key: 0OXA5A5A5A6 -> |nitiate reading
= A7 key: 0OXAS5A5A5A7 -> Initiate writing
= A3 key: OXA5A5A5A3 -> Initiate Erase

= DevicelD of PFS154 is OxAA1

= *The three dummy bits are usually ,000% except in phase 3 where they are ,,011“ Bug? No impact was observed when
changing these bits.



Erase Sequence

+664 ms

+666 ms +668 ms

v

A

v
A

5ms

+680670 ps
I

+680680 |
| | | |

[EZ® sPL-MISO-data

¥ SPL: MISO bits

= Erase sequence:

Entry key is OXASA5A5A3
Ramp to VPP=8V, Vdd=2V

Repeat 2x: (stretched clock 5ms, normal clock 2us) -> 4 clock cycles in total




Read Sequence

+707230 ps +707240 ps +707250 s +707260 ps +707270 ps +707280 s +707290 ps +707300 ps +707310 ps +707320 ps +707330 ps +707340 ps +707350 ps +707360 ps +707370 ps +707380 ps +707390 |
| | | | o ‘ | ] | | | ] ] ] ] | | | | | | ] ] | ] | ] | ] ] ‘ | | | | | ] | | ] | | | | | | | | | ] | ] | ] ] ‘ | ] | | | | | | ] ‘ | | ] | | ] ] ] ] | | | | | ‘ 1

mo L A0 00 4 4 4 00 00 0 Hi—li_i[_ﬂl—l !—H_H_W 1—H—1 I_H_l e Y Y Y
[ S S S S S G S Dy 6 6 OO 0y | G 7P

TV Y PR V!
=y / { Y
[2 v]n.5 Vidiv

PR Y [V [ | N |V | WA | W | Y n
I T I N S AN AN AT, B

M-> S Bus reversal and
first data bit from slave
T Data is valid only after rising clk!

S-> M Bus reversal and
Data is invalid

[2 V]2 V/div

[6 V] 2 Vjdiv

o F8 X [ - oF T FE E £
m O O O R (O G T G O (N SO S S S O G ) S N G S G S0 (W
N VAN J i

e hd
13 bits address 14 bits data 1 bit
Master owns ICPDA slave owns ICPDA -> bus reverse on first rising dedge BR

= Read Sequence
= Command: 0XA5A5A5A6
= Repeat for every word: write 13 bits adress + read 14 bit data + 1 bit bus reversal



Write Sequence

s7aes s 974 s sy s s sz as7ag s w7 s 4000 s 1474950 ps
8x 22s
“«—>
TR W N I 0000 WO o WO o O ] § )
S0 |1 M D | '
I'ﬂﬂ'ﬂ'ﬂ*"ﬂ'ﬂ""""ﬂ"fH' ﬂ‘ﬂfﬂﬂ('wﬂ'ﬂﬂ'ﬂﬂ”ﬂ”'ﬂﬂﬂﬂ*ﬂ"'ﬂ""ﬂI I | | | I
g Al anandaadaamaeeEaeaaaeae e eeaaeeaee e edaeaeaae e e e | [ [ [ | [ 2 i
Ak DO 00000 0 O 000 0 8 O 0800 00104 4
“‘ ’[ | f: ‘{ l! Spurious cycle on data bus.
Is this part of the protocol?

V. n Lhh il "
= i i i i H‘qunrm I JrL ]'L lr“ JF %" 1|rL % +_ "?“ #L + J;' %_ lI'L + M v
0 1 0 0 80 0 88 B 8 S S S, A S A S A
2 Vfdiv

2 V/div
@Mm-ﬂummmm
Y e
4x14 bits data 1x13 bits address Write execution
Master owns ICPDA Master owns ICPDA 8x clock cycles with 22ps + 1x clk cycle with 2ps

= Write Sequence
= Command: 0OXA5A5A5A7
= Ramp VDD=5.8V VPP=7.5V
= Repeat for every page of four words: write 4x14 bit data, 1x13 bit adress, write execuction sequence



Revisions

= V0.1 -Jan 7th, 2019 — cpldcpu. Initial report.

= V0.11 - Jan 7th, 2019 — cpldcpu. Updated clean room disclaimer and front matter.

= V0.2 - Jan 8th, 2019 — cpldcpu. Corrected device ID, added pinouts, corrected write mode
description.

= V0.3 —Jan 9th, 2019 — cpldcpu More pinouts, corrected write execution sequence (p.17),

updated p.18

V0.4 —Jan 13th, 2019 — cpldcpu Added PFS154 section

V0.5 — April 27th, 2019 — cpldcpu Corrected PFS154 voltages



