
Clean room analysis of the PMS150C/PFS154
programming sequence v0.4

Thanks to everyone involved in investigating the Padauk microcontrollers on the EEV and µC.net
forums. Please see here for further background and work leading to this analysis:

http://www.eevblog.com/forum/blog/eevblog-1144-padauk-programmer-reverse-
engineering/350/

https://www.mikrocontroller.net/topic/461002

Clean Room Analysis Disclaimer

 This report is solely based on analyzing datalogs of the programming sequence as provided here:

PMC150C: http://www.eevblog.com/forum/blog/eevblog-1144-padauk-programmer-reverse-
engineering/msg2096917/#msg2096917
PFS154C: http://www.eevblog.com/forum/blog/eevblog-1144-padauk-programmer-reverse-
engineering/msg2113471/#msg2113471

 No attempts have been made by me to reverse engineer any of the software provided by Padauk.

 The information in this document is provided “as is”, without warranty of any kind.

Pinouts

MISO VPP

SCKMOSI

VDDGND
VDD

SCKVPP

MISO

GND

MOSI

OC0A/D6

GND

PB2

PB0

PB1

PB3

ICVPP
ICPDA

ICPCK

PMS150C protocol

Initial analysis of data logs.

From a first glance, the programming interface of the PMS150C seems to be a straight forward SPI interface.
MSB first, data is valid on rising edge of clk.

The pinout is as follows:

 PA3: SCK/Clock (driven by writer/master)
 PA4: MOSI/Data in (driven by writer/master, data is valid on rising edge of clk. Data is set at arbitrary times

due to random timing of writer software)
 PA5: VPP
 PA6: MISO/Data out (driven by MCU, data is valid on rising edge of clk. Data is set on falling edge since the

MCU does not have an internal clk)
 Furthermore, the programmer needs to control VDD to reset the MCU.

VPP is 7.5V during read and 10.8 V during writing.

VDD is 6.0 V during programming, 4 V during entry and 6.5 V/2 V for verification. I may be sufficient to keep
VDD at 5V if you don't want to verify all corner cases.

Note: The PMS105C is a device with 13x1kbit memory and 13 bit instruction encoding.

MISO VPP

SCKMOSI

Overview of dump2 – writing to previously programmed device

VPP =7.5
VDD =4.0

7.5
2.0

7.5
5.0

7.5
2.0

10.8
6.0

10.8
6.0

7.5
6.5

7.5
6.5

7.5
2.0

7.5
2.0

10.8
6.0

7.5
6.5

7.5
2.0

A7Command A6 A6 A6 A7 A7 A6 A6 A6 A6 A7 A6 A6
0Phase 1 2 3 4 5 6 7 8 9 10 11 12

Summary of all phases of the programming sequence (Dump 2)

 Note: For a fresh device, clock calibration takes place between steps 9 and 10.
Two additional phases are inserted (see dump 4).

Phase Command VDD VPP Description

0 A7 (Write) 4.0 V 7.5 V Read device ID. This is achieved by initiating a dummy write that is aborted before starting the actualy OTP programming

1 A6 (Read) 2.0 V 7.5 V Read instruction memory words 0x03F0-0x3FF at low VDD voltage corner. This region contains calibration data.

2 A6 (Read) 5.0 V 7.5 V Read instruction memory words 0x03F0-0x3FF at standard voltage corner. This region contains calibration data. (Should this be VDD=6.5V? May be a bug)

3 A6 (Read) 2.0 V 7.5 V Read instruction memory words 0x000-0x3EF at low VDD voltage corner. Dump of full memory.

4 A7 (Write) 6.0 V 10.8 V Write main memory region between 0x000-0x3EF. Only memory cells used by the program are written to.

5 A7 (Write) 6.0 V 10.8 V Write to 0x3F6/0x3F8/0x3FC/0x3FE. Housekeeping?

6 A6 (Read) 6.5 V 7.5 V Read instruction memory words 0x03F0-0x3FF at high voltage corner for verification.

7 A6 (Read) 6.5 V 7.5 V Read main memory region between 0x000-0x3EF at high voltage corner for verification. Only previously written memory is read.

8 A6 (Read) 2.0 V 7.5 V Read instruction memory words 0x03F0-0x3FF at low voltage corner for verification.

9 A6 (Read) 2.0 V 7.5 V Read main memory region between 0x000-0x3EF at low voltage corner for verification. Only previously written memory is read.

10 A7 (Write) 6.0 V 10.8 V Write to 0x3F6/0x3F8/0x3FC/0x3FE to store clock calibration data and code checksum.

11 A6 (Read) 6.5 V 7.5 V Read instruction memory words 0x03F0-0x3FF at high voltage corner for verification.

12 A6 (Read) 2.0 V 7.5 V Read instruction memory words 0x03F0-0x3FF at low voltage corner for verification.

Enter programming mode

100µ 500µ

Each phase of the programming sequence is as follows:

1. Set all pins to GND
2. Drive VPP to 7.5V (possibly >6V is threshold?)
3. wait 100µs
4. Drive VDD to ~4V
5. wait 500µs
6. Send key/command 0xA5A5A5AX (X=6 for read, X=7 for write)
7. Ramp to target VPP (7.5 V for reading, 10.8V for writing)
8. Wait for 5 ms
9. Ramp to target VDD
10. Wait for 10 ms
11. Perform read or write operation (see later slides)
12. Pull VDD and VPP to GND

Programming mode is always entered with
Vpp=7.5 V
Vdd=4 V

Voltages are only adjusted to final target after sending command (step 6).
Steps 7-10 can be skipped if initial voltages are kept.

Note: Logic levels scale with Vdd. If varying Vdd is implemented, this
needs to be considered in the SPI interface hardware (buffer).

Send command/entry key

Vdd floats?

MCU resets here. Reset voltage is 2V

Enter programming mode with voltage adjustment and read/write phase

Command

Entry sequence Adjust VPP
(Wait time for VPP is 5 ms)

Adjust VDD
(Wait time for VDD is 10 ms)

Data in/out

Read / Write sequence

0xA5A5A5A7 key/command – write

MISO floats
MISO pulled low by MCU after cycle 31

Sequence is 32 cycles in total

Not on PulseView: SPI decoder uses VDD as CS (Active high). This will reset the bitcount when the MCU is reset and ensures proper decoding for magic word
Analog signal were converted to logic by using a threshold of 1.8V (3.3V logic) to also capture the regions with Vdd=2V

0xA5A5A5A6 key/command - read

MISO floats
MISO pulled low by MCU after cycle 31

Sequence is 32 cycles in total

Command / Entry key encoding

 The entry key is 32 bit and is sent by the master directly after entering programming mode.

 A6 key: 0XA5A5A5A6 -> Initiate reading

 A7 key: 0XA5A5A5A7 -> Initiate writing

 No other codes were found.

 The slave (MCU) pulls MISO down after clock 31. The pin floats before, which could suggest that the
programming logic is activated after 31 clocks. This may also suggest that only the LSB is actually used
for commands.

 Phase 0 is basically an incomplete write of 0x0000/0x0000 to 0x000. The write exection cycle is
omitted to prevent the dummy data from actually being written.
The device ID is clocked out of MISO during the adress phase of the write.

 In principle, the device ID could also be read during a read phase.

 Sequence is identical for both previously programmed and clean device (logs 2 and 4)

 Idcode is updated on falling edge! Delay 240-320ns.

32 bits magic key Master sends 26 Bits „0“
=> 2x13 bit empty data word

Master sends 12 bit „0“
=> Adress 0x000
Slave sends 12 bit response
0b101000010110
= 0xA16 device ID

Not that the write execution
sequence is omitted so the actual
memory write is not started.

Phase 0 – Check device ID - Key-A7, Vdd=4 V, Vpp=7.5 V

 Read sequence is straight forward:
 Master sends 12 bit adress, slave sends 13 bits of data in subsequent cycles.

 There is one apparent oddity:
Usually the data on MISO is always updated on the falling clk cycle. However, the MSB of the data is updated with a delay of
half a clock cycle, on the rising edge of the clock.

 => For the MSB, it is therefore necessary to set clk high and read MISO after ~2µs before setting clk low again.
 What is the reason for this behavior? No idea, it could be remnant of a direction switching sequence for a bidirectional port.

Read sequence

Att:MISO updated on rising edge for first clk!

Important !

MISO updated on falling edge for all other cycles

Note extended clk

12 bits adress
Sent by master on MOSI

13 bits data
Sent by MCU

Start of next address

This bit was incorrectly decoded, should be 1

Another example of MISO MSB exception during the read sequence.

MSB is changed on rising and falling
clock edge due to previously
mentioned exception.

Phase 1 – overview – Read 0x3F0-0x3FF (system area)

 The MCU seems to send out information during adress cycles as well:
 During the second adress cycle the device ID is sent.
 Occasionally the MSB is set on MISO in subsequent adress cycles. Glitch? Parity information?

The device ID is clocked out on MISO during the second adress phase of each read cycle.
This could be used instead of an aborted write sequence to read the device ID.
Bug or feature?

Write Sequence Part I

 The PMS150C seems to write two words of memory per write cycle.
 Each write cycle consists of the the following initiation sequence:

 Send 2x 13 bit instruction words
 Send 12 bit adress word. (Needs to be dividable by two ?).
 Send a single „0“ bit. The write cycle seems to be aborted if the device is powered down before sending this bit.
 The next low-> high transition of the clk seems to initiate the write.

13 bits instruction word 0
Sent by master on MOSI

13 bits instruction word 1
Sent by master on MOSI

12 bits adress (even!)
Sent by master on MOSI

1x‘0‘ -> first part of write execution

Stretched clock cycle
-> write takes place here

Device ID (on first adress cycle only)

Write Sequence Part II

 The write execution cycles takes approximately 500µs.
 The sequence consists of three steps:

 1) Send 1x‘0‘ at normal clk – „Leading zero bit“
 2) Stretched clock cycle (497µs) while MOSI is clocked at 16 kHz
 3) Send 1x‘0‘ at normal clk – „Trailing zero bit“

 It appears a secondary clock signal of 16kHz is provided on MOSI. Very odd.

62µs repated 8 times

Stretched clockcycle 497µs

Write initiation
words 0/1

Write execution Write initiation
words 2/3

Trailing zero bit

Leading zero bit

Write Sequence Part III – full sequence overview of phase 5

 The last write execution cycle simply ends with the H->L transition of SCLK.
 The MCU will also output data on MISO during the write initiation cycle.

 First adress cycle: The device ID is clocked out.
 Subsequent cycles: The data and adress words of the previous cycle are repeated.

This may be a feature to verify the correctness of the written data without a separate read phase. However, it seems
that the current software is not making use of it since the information of the last write cycle is discarded.

 Edit: As noted in the EEV forum, this is most likely just information that was clocked out from the SPI register
in the the previous cycle.

?
Device ID

PFS154 protocol

Overview

The programming interface of the PFS154C as based on a serial interface with bidirectial data line. MSB first, data is valid on
rising edge.

The pinout is as follows:

 PA3: ICPCK/Clock (driven by writer/master)
 PA5: VPP
 PA6: ICPDA/Data InOut (driven by slave/MCU or master, depending on bus direction)
 Furthermore, the programmer needs to control VDD to reset the MCU.
ay be sufficient to keep VDD at 5V if you don't want to verify all corner cases.

The PFS154C is a device with 14x2kbit memory and 14 bit instruction encoding.

PFS154

ICVPP
ICPDA

ICPCK

PA3 = ICPCK
PA5 = ICVPP
PA6 = ICPDA
VDD

PFS154 full programming sequence overview

Phase
Command
Vdd
Vpp

0
A6
3.0
5.5

1
A6
5.0
5.5

2
A3
2.0
8.0

3
A6
2.0
5.5

4
A7
5.5
7.5

5
A6
2.0
5.5

6
A7
5.8
7.5

7
A6
2.0
5.5

8
A6
5.0
5.5

PFS154 entry sequence

 Entry mode is very similar to PMS150C. Main differences are marked in red.
 Note: The most important factor to activate the programming mode is the difference between VPP and VDD during MCU reset.

-> VPP-VDD>=2V! If a higher VDD is used, also VPP needs to be increased accordingly.
E.g. VDD=5V and VPP=6V will fail to enter programming mode. The difference between VPP and VDD can be reduced after entry.

500 µs
100 µs

Each phase of the programming sequence is as follows:

1. Set all pins to GND
2. Drive VPP to 5.5V (threshold is relative to VDD)
3. wait 100µs
4. Drive VDD to ~3V
5. wait 500µs
6. Send key/command 0xA5A5A5AX (X=6 read, X=7 write, X=3 erase)
7. Receive response (see later slides)
8. Ramp to target VPP (5.5 V for reading, 7.5V for writing, 8V for

erasing)
9. Wait for 5 ms
10. Ramp to target VDD
11. Wait for 10 ms
12. Perform read or write operation (see later slides)
13. Pull VDD and VPP to GND

Programming mode is always entered with
Vpp=5.5 V
Vdd=3 V

Voltages are only adjusted to final target after sending command (step 6).
Steps 8-11 can be skipped if initial voltages are kept.

Note: Logic levels scale with Vdd. If varying Vdd is implemented, this
needs to be considered in the SPI interface hardware (buffer).

Entry key/command

MCU reset

Full sequence

 Same as for PMS150C

5 ms 10 ms

Command ´Data in/out

Command sequence (Phase 3)

32 bits command
Master owns ICPDA

12 Bit response
Slave owns ICPDA

3 bits command
Master owns ICPDA

1 bit
BR

M->S
Bus reversal

S->M
Bus reversal

Note show slope of data
Changes when slave takes over bus

1 bit
BR

Command / Entry key encoding

 Full command sequence:
 32x1 bit command (Master drives data line)
 3x1 bit dummy* (Master drives data line)
 1x1 bit bus reversal (Master releases data line)
 12x1 bit DeviceID (Slave drives data line)
 1x1 bit bus reversal (Slave release data line)
 48 clock cycles in total.

 The entry key is 32 bit and is sent by the master directly after entering programming mode.

 A6 key: 0XA5A5A5A6 -> Initiate reading

 A7 key: 0XA5A5A5A7 -> Initiate writing

 A3 key: 0xA5A5A5A3 -> Initiate Erase

 DeviceID of PFS154 is 0xAA1

 *The three dummy bits are usually „000“, except in phase 3 where they are „011“. Bug? No impact was observed when
changing these bits.

Erase Sequence

 Erase sequence:
 Entry key is 0XA5A5A5A3
 Ramp to VPP=8V, Vdd=2V
 Repeat 2x: (stretched clock 5ms, normal clock 2µs) -> 4 clock cycles in total

5 ms 5 ms

Read Sequence

 Read Sequence
 Command: 0XA5A5A5A6
 Repeat for every word: write 13 bits adress + read 14 bit data + 1 bit bus reversal

M-> S Bus reversal and
first data bit from slave

Data is valid only after rising clk!

13 bits address
Master owns ICPDA

S-> M Bus reversal and
Data is invalid

14 bits data
slave owns ICPDA -> bus reverse on first rising dedge

1 bit
BR

Write Sequence

8x 22µs

4x14 bits data
Master owns ICPDA

1x13 bits address
Master owns ICPDA

Write execution
8x clock cycles with 22µs + 1x clk cycle with 2µs

 Write Sequence
 Command: 0XA5A5A5A7
 Ramp VDD=5.8V VPP=7.5V
 Repeat for every page of four words: write 4x14 bit data, 1x13 bit adress, write execuction sequence

Spurious cycle on data bus.
Is this part of the protocol?

Revisions

 V0.1 – Jan 7th, 2019 – cpldcpu. Initial report.

 V0.11 - Jan 7th, 2019 – cpldcpu. Updated clean room disclaimer and front matter.

 V0.2 - Jan 8th, 2019 – cpldcpu. Corrected device ID, added pinouts, corrected write mode
description.

 V0.3 – Jan 9th, 2019 – cpldcpu More pinouts, corrected write execution sequence (p.17),
updated p.18

 V0.4 – Jan 13th, 2019 – cpldcpu Added PFS154 section

 V0.5 – April 27th, 2019 – cpldcpu Corrected PFS154 voltages

